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Generally, ordering policies are done by two methods: fix order
quantity (FOQ) and fix order period (FOP). The mentioned
methods are static. It means that the quantity of ordering or the
procedure of ordering is fixed throughout time horizon, while in
real environments, demand may vary in any period, i.e., Dynamic;
it may be considered as uncertainty. When demand is variable in
any period, the traditional static ordering policies with fixed re-
order points cannot be efficient. On the other hand, sometimes, in
real environments, some costs such as holding cost and ordering
cost may not be well-known or precise. Therefore, using the cost-
based inventory models may not be helpful. In this paper, a model
is developed which can be used in the cases of stochastic and
irregular demands, also unknown as costs. Indeed, in these cases,
re-order point can be dynamic. Also, some attributes consisting of
expected positive inventory level, expected negative inventory
level, and inventory confidence level are considered as objective
functions, instead of the objective function of total inventory cost.
A numerical example is also presented for more explanation.
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1. Introduction
Estimating the demand of customer is important
for managing company processes and production
planning. In irregular demands, forecasting is
more difficult and the definition of optimal re-
order policies can be a significant management
problem. Irregular demands may appear in
various production contexts; for example, in
stochastic demands, start-up production, multi-
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echelon supply chains, and so on. In the situation
of irregular demands, the models such as EOQ
and EPQ cannot be very useful. If the cost of
inventories is not accessible, then the cost-based
inventory models may not also be applicable. In
this paper, a model is proposed that can be
helpful in aforementioned situations. In the
classic inventory models, there is an objective
function in terms of total inventory cost. So, all
models intend to find economic order quantity
(EOQ) based on minimum total inventory cost. In
this article, three objective functions are used
instead of total inventory cost. The used objective
functions are expected positive inventory level
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(f’1), expected negative inventory level (f°1), and
inventory confidence level (f2). The goal is
minimization of both f’1 and f’1, and also
maximization of f2. Of course, f’1 and f’1 are
complementary to each other. So, an objective
function as expected inventory level (fl =
f’1+f°1) is considered. Therefore, two objective
functions are assigned.

The main problem in production planning is the
answer to two questions: when and how much we
order. The literature is full of re-order policy
solutions; some based on mathematical models,
others based on heuristic or meta-heuristic
models [1- 3]. In some research studies, demand
is deterministic; in others’; demand is assumed as
stochastic [4]. Also, the production systems can
be considered as Make to Stock (MTS) or
Engineering To Order (ETO). In the system of
MTS, demand is uncertain, while demand in ETO
system is deterministic [5].

Syntetos et al. reported a classification of
irregular and sporadic demands [6]. They
assumed that the distribution of inter-demand
intervals and demand sizes are geometric and
normal, respectively. Two main issues can be
identified in irregular demands of pattern
management. The first approach is the
application of forecasting techniques; the second
approach is the evaluation of different inventory
control models in irregular demands [7]. Nenes et
al. discussed the stochastic inventory control in
the case of irregular demands [8]. Some case
studies about inventory control systems and
modelling of irregular demand patterns can be
seen in some studies [9-17]. Since the irregular
demand phenomenon is made up of two
constituent elements, which are demand
intermittence and demand variability, a
compound demand distribution is often
suggested. Compound Poisson demand processes
have been more often preferred due to their
theoretical advantages and simplicity. Feeny et al.
used one of the early contributions on the
application of this compound demand distribution
in the inventory control [18]. Also, other papers
worked in these fields [19-31]. Gamberini et al.
proposed an approach for dynamic re-order
policy about irregular demand [5].

Nevertheless, the aforementioned contributions
propose cost-based approaches, disregarding the
fact that cost structures are not always known.
For example, in new companies or producing
new items, costs may not be well known.
Moreover, holding, ordering, and shortage costs,
which often have effect on the best re-order
policy and inventory management approach, are

hardly quantifiable in a wide range of operative
environments. Unitary holding costs are obtained
by dividing annual holding costs among stocked
items. Stocked items are strictly connected with
the adopted re-order and inventory management
approach. Hence, rather than the fixed value of
the unitary holding costs registered in the past,
approaches for selecting the best re-order policy
and inventory management approach should
adopt functions that describe the trend of unitary
holding costs in accordance with the amount of
stocked items registered. Otherwise, when a fixed
value of the unitary holding cost registered in the
past is adopted, a simplified model of the reality
is implemented. Furthermore, shortage costs are
related to lost demands or customer
dissatisfaction, which are hardly quantifiable in
an economic parameter [5]. In this paper, three
non-cost based attributes are applied such as
expected positive inventory level, expected
negative inventory level, and inventory
confidence level. Of course, the sum of expected
positive inventory level and expected negative
inventory level are considered as an objective
function named as expected inventory level.

In classical models, generally all parameters and
decision variables are static and constant in each
period, while in real cases, the conditions of any
period may be different from other periods.
Hence, it is better for some parameters or
variables, such as re-order point, order quantity,
and etc., to be considered dynamically. In this
paper, an approach is described for solving this
problem. A bi-objective programming model is
designed. The parameter of demand is stochastic
and a discrete event simulation approach is
applied to solve the above-mentioned model.
Also, a numerical example is presented for
explaining algorithm and its validation.

2. The Proposed Model
2-1. Parameters
Some used parameters are as follows:
ICL  inventory confidence level, probability
that demand (consumption) is less than re-order
point in a period

X demand during a time period, which can
be random

f(x) probability density function of x

n number of time periods in the planning
horizon

L inventory level at the end of period i, for
i=0,...,n

I expected positive inventory level at the

end of each time period
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I expected negative inventory level at the
end of each time period

I, expected inventory level (sum of positive
and negative inventories) at the end of each time
period

LT lead time

SS safety stock

2-2. Decision variables
ROP; re-order point in time period i, for i =
0,...,n

Q lot size (order quantity) in time period i,
fori=0,...,n
Zi a tolerance that is added to ROPi to

compensate for uncertainty in time period i, for i
=0,...,n
2-3. Assumptions

Some of the considered assumptions are as
follows:

Inventory at the beginning of planning horizon is
Zero.

Inventory costs such as holding cost, ordering
cost, shortage cost, and etc. are unknown.

Inventory

ROP

Time

< N
LT

Fig. 1. (ROP, Q) policy

This paper refers to dynamic lot-sizing policies
that belong to the (ROP;, Q;) approach with a
periodic review of the inventory level (see Fig.
3). The quantity Qj+; is ordered whenever the
inventory level I; drops to the re-order point ROP;
at the end of each time period i (periodic review),
with Qi+1 and ROP; depending on the specific

» Lead time rather than time periods is small and

negligible, so it can be assumed equal to zero.
Any order will be received in the same time
period.

The probability density function f(X) is constant
for each time period. In this paper, Uniform
distribution is applied.

The re-order point may change in any time
period, but its procedure is constant for all time
periods.

2-4. Proposed model

Two main kinds of static multi-period re-order
policies are used in the standard inventory
management: (ROP, Q) and (T, Quux). In the
(ROP, Q) policy, the fixed quantity Q is ordered
whenever the inventory level drops to the re-
order point ROP or below (see Fig.1)). Thus, this
basic policy involves a continuous review of the
inventory level. Instead, the control procedure in
the (T, Qmax) policy is such that for every T units
of time a variable quantity Q; is ordered to raise
the inventory position to level Qna (see Fig. 2).
In this policy, review of the inventory level is
interval [26].

Inventory LTI LT2

Qmax

Time

Fig. 2. (T, Qmax) policy

time period i (dynamic policy). Since lead time is
zero, the re-order quantity Qi+ could be
considered available at the beginning of time
period i+1.

Note that the order of Qj.+; units is placed at the
end of time period i because |; < ROP;.
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Inventory
ROP;
RO fosnissionanaad s )
ROP;.,
i > Time
i i+2 i+3

Fig. 3. (ROP, Q) policy

This paper deals with a stochastic dynamic lot-
sizing problem that is non-cost based and a
maximal inventory confidence level criterion,
that is used as the probability that at the end of
every period, the net inventory will not be
negative. The demand X is considered as a
random variable with a known probability density
function f(x) that may vary from a period to
another. Of course, in this study, f(x) is
considered as Uniform probability density
function and is fixed in each period.

The proposed model can be expressed as the
minimization of two expected inventory levels
(positive and negative) and maximization
inventory confidence level with several
constrains as follows:

n Il
Min  f,=E(1") =%Z.|.Ii.f(xi)dx -

i=0 ¢
0l (1
Y i+ 60930 Fx) o
n i=0 o
Min f"l=E(l‘):%Zﬂli\.f(xi)dxz
. @
— >[I0+ 64.Q = %) () dx
Moy
1< ROR
Max fZ:E(ICL):FZ ff(xi)dx 3)
=0 "o
St: |i=|i—1+é‘i—1-Qi_Xi Vi=0,~--,n (4)
ROR =X; +55+7; Vi=0,---,n %)
1 IiI<ROR .
§i={0 otherwise " ©
Q,z 20 @)

Since f; and f’, show inventory levels against
each other, and f*; advises the minimization of
ROP and 7, advises the maximization of ROP,
so they may not be helpful singly and is better to
be combined as an objective function. Also,
because f, is always advised for the maximization
of ROP, hence its solution is known
approximately, and can optionally be removed
from the list of objective functions. However, the
above model may be rewritten as follows:

Min  f,=E(1")+E( )=

n i n +®
1
H[ Ii.f(xi)dx+zJ.|Ii|.f(xi)de

i=0 i=0 i
LG
Max f2=E(|CL)=—ZJ'f(xi)dx
nis = (3)
st:  L=li+6,Q-%  Vi=0,-,n
ROPR = X; + 55+ Yi=0,---,n
1 I, <ROP,
5 = _ =0,-,n
0 Otherwise

Qi,z20

Integral in Eq. (1) represents expected positive
inventory level at the end of time period i, and
sigma calculates the sum of expected positive
inventory levels throughout planning horizon. Eq.
(2) is similar to Eq. (1) with the exception that an
absolute function is used for negative inventory
levels. Integral in Eq. (3) obtains inventory
confidence level for each period i and sigma
calculates the sum of these confidence levels.
Constraint (4) shows how to calculate inventory
levels in each period in terms of the inventory of
past period, demand, and order quantity in the
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same period. Constraint (5) represents the re-
order point in the (ROPI, Qi) policy (according to
Fig. 3); the dynamic quantity zi as a decision
variable is added to ROPi as a precautionary size
against the high variability and uncertainty of the
demand. Constraint (6) defines a binary variable
which can be useful in the model and depends on
the replenishment order placed in time period i.
Constraint (7) shows that Qi and zi are decision
variables and cannot be negative [32-34].

Thus, the stochastic dynamic lot-sizing problem
formulated above can be used to evaluate the two
dynamic decision variables Qi and zi for each
time period i, supposing that the probability
density function f(x) is known. In fact, all the
achieved results depend on the applied
probability density function f(x), which affects
the calculation of the sizes necessary for the
application of the re-order policies.

2-5. Structure of model solving

There are two main problems in model’s solution.
First, since demand is stochastic and model is a
bi-objective programming, solving the
aforementioned model is hard directly. Next
problem is that due to discrete planning horizon,
the objective functions have also been defined

discretely by sigma. Solving these models is
directly difficult too. Therefore, the discrete event
simulation approach is applied in this paper. For
this goal, many data are generated for x, f(x), and
model is analyzed for the different values of
decision variables.

The flowchart of figure (4) is recommended for
completing process.

3. Numerical Example
Assume that a manufacturing company would
like to perform an inventory planning during 20
time period (weekly) as planning horizon. Safety
stock is equal to 50. Demand’s random variable
follows Uniform probability density function
between 100 and 500 (x~ U[100, 500]). The
value of inventory in the beginning of planning
horizon is zero. The goal is minimization of the
expected inventory level (f;) and maximization of
the expected inventory confidence level (f3).
Since demand is stochastic, the simulation model
was run 30 times for 20 time period, and in each
period, for 400 different values of Q; and 50
different values of z. A sample of obtained
efficient solution is seen in Table (1).

Tab. 1. A sample of efficient solution

i Q ROP ICL
1 341 434 0.835 Min f; = 100.55
2 341 365 0.6625
3 341 383 0.7075 Max f, = 0.769875
4 341 267 0.4175
5 341 272 0.43
6 341 462 0.905
7 341 157 0.1425
8 341 456 0.89
9 341 478 0.945
10 341 435 0.8375
11 341 169 0.1725
12 341 317 0.5425
13 341 497 0.9925
14 341 468 0.92
15 341 301 0.5025
16 341 537 1

17 341 500 1

18 341 174 0.185
19 341 532 1
20 341 297 0.4925
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Determine
n, SS and f(x)

v

Generate
x; according to f(x)
fori=0,...,n _l

Consider an Consider an
interval for z; interval for Q;
Obtain ROP; for Obtain o;, I; for

Xi, Z; (i=0, .. .Il) » X, Qi (i:(),. . .Il)

Eq. (5) Eq. (4)

!

Calculate |_i+, |_i7
Integral of Eq. (1), (2)
Calculate 1CL, 7

Integral of Ea.

A

Calculate |_+, I~
Sigma of Eq. (1), (2)

v v
f,=E(ICL) f=1"+1"
Sigma of Eq. Eq. (8)

Select an efficient
solution with
respect to fi, f;

Fig. 4. Structure of Model’s Solution

Similarly, the above model was run 30 times and 30 efficient solutions were obtained (see Table 2):

Tab. 2. Efficient solutions for 30 times running
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Min f; 100.55 94.8 102.4 84.15103.2 75.3 95.25 95.2 108.55 88.6 69.05 94.2 106.25 113.4 134.85
Max f, 0.770 0.778 0.627 0.700 0.710 0.701 0.644 0.623 0.690 0.753 0.720 0.705 0.690 0.732 0.701

Run 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Min f; 115.7 71.55103.1 88 135.3122.25120.3144.9 922 79.3 1155 86.4 98.7 94.75 91.3
Max f, 0.766 0.718 0.715 0.765 0.726 0.644 0.704 0.744 0.684 0.753 0.683 0.693 0.754 0.735 0.751
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In this stage, inventory manager as decision-
maker (DM) can select one of the presented
efficient solutions. But, in this paper, TOPSIS
method, which is one of suitable methods in
multi-attribute  decision-making (MADM), is
used to select the best solution [35].

By using TOPSIS method, the best efficient
solution is obtained as Table (3):

Tab. 3. Best efficient solution obtained by
TOPSIS method

i Q ROP ICL
1 303 350 0.625 Minfi= 69.05
2 303 317 0.5425

3 303 430 0.825 Maxfh= 0.720375
4 303 223 0.3075

5 303 321 0.5525

6 303 369 0.6725

7 303 478 0.945

8 303 368 0.67

9 303 322 0.555

10 303 355 0.6375

11 303 242 0355

12 303 399 0.7475

13 303 347 0.6175

14 303 424 081

15 303 507 1

16 303 300 0.5

17 303 272 0.43

18 303 268 0.42

19 303 211 02775

20 303 363 0.6575

The results of Table (3) show that economic
order quantity in each period is 303 units
constantly, while the value of re-order point is
different in each period dynamically. According
to ROP, the confidence level of inventory may
also vary from 27.8% to 100%, but, its expected
value during all over of planning horizon is 72%,
while expected inventory level is 69 units. It
means that if Q and ROP are selected according
to Table (3) in each time period, the company
could obtain the best values for inventory and
confidence levels.

4. Discussions and Conclusions
Assume that the above example is considered as
static; for instance, in Table (3), Q = 303; x has
Uniform probability density function between
100 and 500; ROP is taken as the average of
ROP’s in all over time periods, i.e., ROP = 343.3,
then expected inventory level is equal to 103.12

and expected inventory confidence level is equal
to 0.60825. It is clear that the obtained solution is
not better than the solution of Table (3) and is
dominated. In other words, considering the
problem dynamically can reduce the expected
inventory level and raise the expected inventory
confidence level.

In this paper, a model is proposed which can be
used when the cost estimation is impossible or
hard. Also, the proposed model can be helpful
when demand is irregular and variable in each
time period. A bi-objective model was presented
and the structure of model solving was explained.
Also a numerical example was described and its
validation by a numerical instant was tested.
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