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(f’1), expected negative inventory level (f”1), and 
inventory confidence level (f2). The goal is 
minimization of both f’1 and f”1, and also 
maximization of f2. Of course, f’1 and f”1 are 
complementary to each other. So, an objective 
function as expected inventory level (f1 = 
f’1+f”1) is considered. Therefore, two objective 
functions are assigned.  
The main problem in production planning is the 
answer to two questions: when and how much we 
order. The literature is full of re-order policy 
solutions; some based on mathematical models, 
others based on heuristic or meta-heuristic 
models [1- 3]. In some research studies, demand 
is deterministic; in others’; demand is assumed as 
stochastic [4]. Also, the production systems can 
be considered as Make to Stock (MTS) or 
Engineering To Order (ETO). In the system of 
MTS, demand is uncertain, while demand in ETO 
system is deterministic [5].  
Syntetos et al. reported a classification of 
irregular and sporadic demands [6]. They 
assumed that the distribution of inter-demand 
intervals and demand sizes are geometric and 
normal, respectively. Two main issues can be 
identified in irregular demands of pattern 
management. The first approach is the 
application of forecasting techniques; the second 
approach is the evaluation of different inventory 
control models in irregular demands [7]. Nenes et 
al. discussed the stochastic inventory control in 
the case of irregular demands [8]. Some case 
studies about inventory control systems and 
modelling of irregular demand patterns can be 
seen in some studies [9-17]. Since the irregular 
demand phenomenon is made up of two 
constituent elements, which are demand 
intermittence and demand variability, a 
compound demand distribution is often 
suggested. Compound Poisson demand processes 
have been more often preferred due to their 
theoretical advantages and simplicity. Feeny et al. 
used one of the early contributions on the 
application of this compound demand distribution 
in the inventory control [18]. Also, other papers 
worked in these fields [19-31]. Gamberini et al. 
proposed an approach for dynamic re-order 
policy about irregular demand [5]. 
Nevertheless, the aforementioned contributions 
propose cost-based approaches, disregarding the 
fact that cost structures are not always known. 
For example, in new companies or producing 
new items, costs may not be well known. 
Moreover, holding, ordering, and shortage costs, 
which often have effect on the best re-order 
policy and inventory management approach, are 

hardly quantifiable in a wide range of operative 
environments. Unitary holding costs are obtained 
by dividing annual holding costs among stocked 
items. Stocked items are strictly connected with 
the adopted re-order and inventory management 
approach. Hence, rather than the fixed value of 
the unitary holding costs registered in the past, 
approaches for selecting the best re-order policy 
and inventory management approach should 
adopt functions that describe the trend of unitary 
holding costs in accordance with the amount of 
stocked items registered. Otherwise, when a fixed 
value of the unitary holding cost registered in the 
past is adopted, a simplified model of the reality 
is implemented. Furthermore, shortage costs are 
related to lost demands or customer 
dissatisfaction, which are hardly quantifiable in 
an economic parameter [5]. In this paper, three 
non-cost based attributes are applied such as 
expected positive inventory level, expected 
negative inventory level, and inventory 
confidence level. Of course, the sum of expected 
positive inventory level and expected negative 
inventory level are considered as an objective 
function named as expected inventory level. 
In classical models, generally all parameters and 
decision variables are static and constant in each 
period, while in real cases, the conditions of any 
period may be different from other periods. 
Hence, it is better for some parameters or 
variables, such as re-order point, order quantity, 
and etc., to be considered dynamically. In this 
paper, an approach is described for solving this 
problem. A bi-objective programming model is 
designed. The parameter of demand is stochastic 
and a discrete event simulation approach is 
applied to solve the above-mentioned model. 
Also, a numerical example is presented for 
explaining algorithm and its validation. 
 

2. The Proposed Model 
2-1. Parameters 
Some used parameters are as follows: 
ICL inventory confidence level, probability 
that demand (consumption) is less than re-order 
point in a period 
x demand during a time period, which can 
be random 
f(x) probability density function of x 
n number of time periods in the planning 
horizon 
Ii inventory level at the end of period i, for 
i = 0,…,n 

iI  expected positive inventory level at the 

end of each time period 
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
iI  expected negative inventory level at the 

end of each time period 

iI  expected inventory level (sum of positive 
and negative inventories) at the end of each time 
period 
LT lead time 
SS safety stock 
 

2-2. Decision variables 
ROPi re-order point in time period i, for i = 
0,…,n 
Qi lot size (order quantity) in time period i, 
for i = 0,…,n 
zi a tolerance that is added to ROPi to 
compensate for uncertainty in time period i, for i 
= 0,…,n 
 

2-3. Assumptions 
Some of the considered assumptions are as 
follows: 

• Inventory at the beginning of planning horizon is 
zero. 

• Inventory costs such as holding cost, ordering 
cost, shortage cost, and etc. are unknown.  

• Lead time rather than time periods is small and 
negligible, so it can be assumed equal to zero. 
Any order will be received in the same time 
period.  

• The probability density function f(x) is constant 
for each time period. In this paper, Uniform 
distribution is applied. 

• The re-order point may change in any time 
period, but its procedure is constant for all time 
periods. 
 

2-4. Proposed model 
Two main kinds of static multi-period re-order 
policies are used in the standard inventory 
management: (ROP, Q) and (T, Qmax). In the 
(ROP, Q) policy, the fixed quantity Q is ordered 
whenever the inventory level drops to the re-
order point ROP or below (see Fig.1)). Thus, this 
basic policy involves a continuous review of the 
inventory level. Instead, the control procedure in 
the (T, Qmax) policy is such that for every T units 
of time a variable quantity Qi is ordered to raise 
the inventory position to level Qmax (see Fig. 2). 
In this policy, review of the inventory level is 
interval [26]. 

 
 

Fig. 1. (ROP, Q) policy Fig. 2. (T, Qmax) policy 
 
This paper refers to dynamic lot-sizing policies 
that belong to the (ROPi, Qi) approach with a 
periodic review of the inventory level (see Fig. 
3). The quantity Qi+1 is ordered whenever the 
inventory level Ii drops to the re-order point ROPi 
at the end of each time period i (periodic review), 
with Qi+1 and ROPi depending on the specific 

time period i (dynamic policy). Since lead time is 
zero, the re-order quantity Qi+1 could be 
considered available at the beginning of time 
period i+1. 
Note that the order of Qi+1 units is placed at the 
end of time period i because Ii ≤ ROPi. 
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same period. Constraint (5) represents the re-
order point in the (ROPi, Qi) policy (according to 
Fig. 3); the dynamic quantity zi as a decision 
variable is added to ROPi as a precautionary size 
against the high variability and uncertainty of the 
demand. Constraint (6) defines a binary variable 
which can be useful in the model and depends on 
the replenishment order placed in time period i. 
Constraint (7) shows that Qi and zi are decision 
variables and cannot be negative [32-34]. 
Thus, the stochastic dynamic lot-sizing problem 
formulated above can be used to evaluate the two 
dynamic decision variables Qi and zi for each 
time period i, supposing that the probability 
density function f(x) is known. In fact, all the 
achieved results depend on the applied 
probability density function f(x), which affects 
the calculation of the sizes necessary for the 
application of the re-order policies. 
 

2-5. Structure of model solving 
There are two main problems in model’s solution. 
First, since demand is stochastic and model is a 
bi-objective programming, solving the 
aforementioned model is hard directly. Next 
problem is that due to discrete planning horizon, 
the objective functions have also been defined 

discretely by sigma. Solving these models is 
directly difficult too. Therefore, the discrete event 
simulation approach is applied in this paper. For 
this goal, many data are generated for x, f(x), and 
model is analyzed for the different values of 
decision variables. 
The flowchart of figure (4) is recommended for 
completing process. 
 

3. Numerical Example 
Assume that a manufacturing company would 
like to perform an inventory planning during 20 
time period (weekly) as planning horizon. Safety 
stock is equal to 50. Demand’s random variable 
follows Uniform probability density function 
between 100 and 500 (x~ U[100, 500]). The 
value of inventory in the beginning of planning 
horizon is zero. The goal is minimization of the 
expected inventory level (f1) and maximization of 
the expected inventory confidence level (f2). 
Since demand is stochastic, the simulation model 
was run 30 times for 20 time period, and in each 
period, for 400 different values of Qi and 50 
different values of zi. A sample of obtained 
efficient solution is seen in Table (1). 

 
Tab. 1. A sample of efficient solution 

i Q ROP ICL 
1 341 434 0.835 Min f1 = 100.55 
2 341 365 0.6625 
3 341 383 0.7075 Max f2 = 0.769875 
4 341 267 0.4175 
5 341 272 0.43 
6 341 462 0.905
7 341 157 0.1425 
8 341 456 0.89 
9 341 478 0.945 
10 341 435 0.8375 
11 341 169 0.1725 
12 341 317 0.5425 
13 341 497 0.9925 
14 341 468 0.92 
15 341 301 0.5025 
16 341 537 1 
17 341 500 1 
18 341 174 0.185 
19 341 532 1 
20 341 297 0.4925 
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Fig. 4. Structure of Model’s Solution 

 
Similarly, the above model was run 30 times and 30 efficient solutions were obtained (see Table 2): 
 

Tab. 2. Efficient solutions for 30 times running 
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Min f1 100.55 94.8 102.4 84.15 103.2 75.3 95.25 95.2 108.55 88.6 69.05 94.2 106.25 113.4 134.85
Max f2 0.770 0.778 0.627 0.700 0.710 0.701 0.644 0.623 0.690 0.753 0.720 0.705 0.690 0.732 0.701

Run 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
Min f1 115.7 71.55 103.1 88 135.3 122.25 120.3 144.9 92.2 79.3 115.5 86.4 98.7 94.75 91.3 
Max f2 0.766 0.718 0.715 0.765 0.726 0.644 0.704 0.744 0.684 0.753 0.683 0.693 0.754 0.735 0.751
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In this stage, inventory manager as decision-
maker (DM) can select one of the presented 
efficient solutions. But, in this paper, TOPSIS 
method, which is one of suitable methods in 
multi-attribute decision-making (MADM), is 
used to select the best solution [35].  
By using TOPSIS method, the best efficient 
solution is obtained as Table (3): 
 
Tab. 3. Best efficient solution obtained by 

TOPSIS method 
i Q ROP ICL 

1 303 350 0.625 Min f1 = 69.05 
2 303 317 0.5425 
3 303 430 0.825 Max f2 = 0.720375
4 303 223 0.3075 
5 303 321 0.5525 
6 303 369 0.6725 
7 303 478 0.945 
8 303 368 0.67 
9 303 322 0.555 
10 303 355 0.6375 
11 303 242 0.355 
12 303 399 0.7475 
13 303 347 0.6175 
14 303 424 0.81 
15 303 507 1 
16 303 300 0.5 
17 303 272 0.43 
18 303 268 0.42 
19 303 211 0.2775 
20 303 363 0.6575 
 
The results of Table (3) show that economic 
order quantity in each period is 303 units 
constantly, while the value of re-order point is 
different in each period dynamically. According 
to ROP, the confidence level of inventory may 
also vary from 27.8% to 100%, but, its expected 
value during all over of planning horizon is 72%, 
while expected inventory level is 69 units. It 
means that if Q and ROP are selected according 
to Table (3) in each time period, the company 
could obtain the best values for inventory and 
confidence levels. 
 

4. Discussions and Conclusions 
Assume that the above example is considered as 
static; for instance, in Table (3), Q = 303; x has 
Uniform probability density function between 
100 and 500; ROP is taken as the average of 
ROP’s in all over time periods, i.e., ROP = 343.3, 
then expected inventory level is equal to 103.12 

and expected inventory confidence level is equal 
to 0.60825. It is clear that the obtained solution is 
not better than the solution of Table (3) and is 
dominated. In other words, considering the 
problem dynamically can reduce the expected 
inventory level and raise the expected inventory 
confidence level. 
In this paper, a model is proposed which can be 
used when the cost estimation is impossible or 
hard. Also, the proposed model can be helpful 
when demand is irregular and variable in each 
time period. A bi-objective model was presented 
and the structure of model solving was explained. 
Also a numerical example was described and its 
validation by a numerical instant was tested. 
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